Characterization of strains unlike Mesorhizobium loti that nodulate lotus spp. in saline soils of Granada, Spain.

نویسندگان

  • María J Lorite
  • Socorro Muñoz
  • José Olivares
  • María J Soto
  • Juan Sanjuán
چکیده

Lotus species are forage legumes with potential as pastures in low-fertility and environmentally constrained soils, owing to their high persistence and yield under those conditions. The aim of this work was the characterization of phenetic and genetic diversity of salt-tolerant bacteria able to establish efficient symbiosis with Lotus spp. A total of 180 isolates able to nodulate Lotus corniculatus and Lotus tenuis from two locations in Granada, Spain, were characterized. Molecular identification of the isolates was performed by repetitive extragenic palindromic PCR (REP-PCR) and 16S rRNA, atpD, and recA gene sequence analyses, showing the presence of bacteria related to different species of the genus Mesorhizobium: Mesorhizobium tarimense/Mesorhizobium tianshanense, Mesorhizobium chacoense/Mesorhizobium albiziae, and the recently described species, Mesorhizobium alhagi. No Mesorhizobium loti-like bacteria were found, although most isolates carried nodC and nifH symbiotic genes closely related to those of M. loti, considered the type species of bacteria nodulating Lotus, and other Lotus rhizobia. A significant portion of the isolates showed both high salt tolerance and good symbiotic performance with L. corniculatus, and many behaved like salt-dependent bacteria, showing faster growth and better symbiotic performance when media were supplemented with Na or Ca salts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037

Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M. loti strains able to form effective nodules on the agriculturally important legume Lotus pedunculatus. NZP2037 is an aerobic, Gram negative, non-spore-forming rod. This report rev...

متن کامل

Bacterial surface polysaccharides and their role in the rhizobia-legume association

The establishment of a nitrogen-fixing symbiosis is an economically important plant phenomenon. Biological reduction of dinitrogen to ammonia is among the most effective fixation systems facilitating the plant growth in nitrogen starved soils without the requirement of massive inputs of fertilizers. This process occurs in legumes roots in structures called nodules. Nodule development is induced...

متن کامل

Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A

Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R...

متن کامل

The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes

Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively th...

متن کامل

Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation

Rhizobial bacteria are known for their capacity to fix nitrogen for legume hosts. However ineffective rhizobial genotypes exist and can trigger the formation of nodules but fix little if any nitrogen for hosts. Legumes must employ mechanisms to minimize exploitation by the ineffective rhizobial genotypes to limit fitness costs and stabilize the symbiosis. Here we address two key questions about...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 12  شماره 

صفحات  -

تاریخ انتشار 2010